Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Not AvailableWe consider the inverse problem of determining an elastic dislocation that models a seismic fault in the quasi-static regime of aseismic, creeping faults, from displacement measurements made at the surface of Earth. We derive both a distributed and a boundary shape derivative that encodes the change in a misfit functional between the measured and the computed surface displacement under infinitesimal movements of the dislocation and infinitesimal changes in the slip vector, which gives the displacement jump across the dislocation. We employ the shape derivative in an iterative reconstruction algorithm. We present some numerical test of the reconstruction algorithm in a simplified 2D setting.more » « lessFree, publicly-accessible full text available June 1, 2026
-
The 3D incompressible Euler equations in a bounded domain are most often supplemented with impermeable boundary conditions, which constrain the fluid to neither enter nor leave the domain. We establish well-posedness with inflow, outflow of velocity when either the full value of the velocity is specified on inflow, or only the normal component is specified along with the vorticity (and an additional constraint). We derive compatibility conditions to obtain regularity in a Hölder space with prescribed arbitrary index, and allow multiply connected domains. Our results apply as well to impermeable boundaries, establishing higher regularity of solutions in Hölder spaces.more » « less
-
We establish conditions for shear flows on the d -dimensional torus that give enhanced dissipation for the associated linear advection-diffusion equation for well-prepared data. The diffusion operator can be of fractional or high order and does not need to have constant coefficients. We then construct flows that satisfy these assumptions and obtain a quantitative estimate on the dissipation enhancement. Our examples generalize known examples in two space dimensions to the high-dimensional setting, which is relevant in applications to sampling a distribution and in optimization.more » « less
-
In 1983, Antontsev, Kazhikhov, and Monakhov published a proof of the existence and uniqueness of solutions to the 3D Euler equations in which on certain inflow boundary components fluid is forced into the domain while on other outflow components fluid is drawn out of the domain. A key tool they used was the linearized Euler equations in vorticity form. We extend their result on the linearized problem to multiply connected domains and establish compatibility conditions on the initial data that allow higher regularity solutions.more » « less
-
We consider a model for elastic dislocations in geophysics. We model a portion of the Earth’s crust as a bounded, inhomogeneous elastic body with a buried fault surface, along which slip occurs. We prove well-posedness of the resulting mixed-boundary-value-transmission problem, assuming only bounded elastic moduli. We establish uniqueness in the inverse problem of determin- ing the fault surface and the slip from a unique measurement of the displacement on an open patch at the surface, assuming in addition that the Earth’s crust is an isotropic, layered medium with Lamé coefficients piecewise Lipschitz on a known partition and that the fault surface satisfies certain geo- metric conditions. These results substantially extend those of the authors in [Arch. Ration. Mech. Anal. 236, 71–111 (2020)].more » « less
-
We consider transport of a passive scalar advected by an irregular divergence-free vector field. Given any non-constant initial data ρ ¯ ∈ H loc 1 ( R d ) , d ≥ 2 , we construct a divergence-free advecting velocity field v (depending on ρ ¯ ) for which the unique weak solution to the transport equation does not belong to H loc 1 ( R d ) for any positive time. The velocity field v is smooth, except at one point, controlled uniformly in time, and belongs to almost every Sobolev space W s , p that does not embed into the Lipschitz class. The velocity field v is constructed by pulling back and rescaling a sequence of sine/cosine shear flows on the torus that depends on the initial data. This loss of regularity result complements that in Ann. PDE , 5(1):Paper No. 9, 19, 2019. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 1)’.more » « less
An official website of the United States government
